Illinois State Library

Electronic Documents of Illinois


Search:
W* in FirstWord [X]
Illinois State Water Survey in Organization [X]
rss icon RSS
Results:  8 Items
Sorted by:  
Page: 1
Organization
Illinois State Water Survey[X]
XMLRecordID
000000000740 (1)
000000000741 (1)
000000000766 (1)
000000000831 (1)
000000000834 (1)
DateCreated
 

Title:  

Water quality and treatment of domestic groundwater supplies

 
 Volume/Number:  1973  
 Issuing Agency:   
 Description:  This circular presents basic information on water quality and treatment of domestic and farm groundwater supplies. It describes tests and practices that assure a safe sanitary water quality, and discusses in detail the common minerals and natural gases that are of concern to home water supplies in Illinois. It describes water treatment procedures and equipment for disinfection, iron removal, softening, methane and hydrogen sulfide gas removal, and their costs. 
 Date Created:  9 24 2004 
 Agency ID:  C-118 
 ISL ID:  000000000741   Original UID: 999999993775 FIRST WORD: Water 
 

Title:  

Water quality trends of the Illinois Waterway system upstream of Peoria including the Chicago metropolitan area.

 
 Volume/Number:  2001  
 Issuing Agency:   
 Description:  The long-term temporal trends of water quality in the Illinois Waterway system upstream of Peoria are described in this report. The time period investigated was from 1965 to 1995. The seasonal Kendall trend test was used to detect statistically significant trends. A related test, the seasonal Kendall slope estimator, was used to calculate the magnitude of the trend. Box plots were also used to visualize differences in data over time. The water quality analytes considered in this report include dissolved oxygen, ammonia-nitrogen, nitrate and nitrite-nitrogen, total Kejeldahl nitrogen, total phosphorous, sulfate, turbidity, total suspended solids, fecal coliform, cyanide, and phenol. Water quality was generally found improved at all stations. Substantial improvements were found at most stations for dissolved oxygen, the nitrogen species, phenol, and cyanide concentrations. Fecal coliform densities generally decreased at most locations. Little or variable change was found for turbidity, total suspended solids, and total phosphorus concentrations. Increasing trends were detected for sulfate concentrations. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2001-03 
 ISL ID:  000000000834   Original UID: 999999994314 FIRST WORD: Water 
 

Title:  

Water resources availability, quality, and cost in northeastern Illinois

 
 Volume/Number:  1976  
 Issuing Agency:   
 Description:  This report summarizes extensive studies of the water resources of northeastern Illinois. This 3700-hundred square mile metropolitan-industrial area includes Cook, DuPage, Kane, McHenry, Lake and Will Counties with a population of seven million persons.Water shortages, depending on resource use schemes, may approach 200 million gallons by the year 2000. Possibilities for meeting these needs are described as a guide to allocation of Lake Michigan water and future planning for water resources. 
 Date Created:  9 24 2004 
 Agency ID:  RI-83 
 ISL ID:  000000000932   Original UID: 999999993945 FIRST WORD: Water 
 

Title:  

Water-level trends and pumpage in the deep bedrock aquifers in the Chicago region, 1991 - 1995

 
 Volume/Number:  1997  
 Issuing Agency:   
 Description:  The deep bedrock aquifer system in northeastern Illinois is encountered at depths ranging from about 200 feet in areas of central northern Illinois to an average of about 1,000 feet below land surface at Chicago. The aquifers have a collective thickness of 300 to 1,300 feet in the Chicago region, averaging 700 feet. They are composed chiefly of sandstones and dolomites, although most of the water is derived from the sandstone units. Pumpage from deep bedrock wells for public and self-supplied industrial supplies in the Chicago region increased from 200,000 gallons per day (gpd) in 1864 to a peak withdrawal of 182.9 million gallons per day (mgd) in 1979. Between 1991 and 1994, pumpage decreased from 112.7 mgd to 67.1 mgd, mostly due to a shift to Lake Michigan water, particularly in DuPage County. As a result, water levels in deep wells rose between 1991 and 1995, particularly in southern Lake, eastern DuPage, and western Cook Counties. Average annual water-level rises during the four-year period varied from one foot in Kendall County to 38 feet in DuPage County and averaged about 14 feet. This marked the first time that average water-level changes were upward in all eight counties of the Chicago area since detailed record-keeping began in the 1950s. 
 Date Created:  9 24 2004 
 Agency ID:  C-182 
 ISL ID:  000000000766   Original UID: 999999993845 FIRST WORD: Water 
 

Title:  

Watershed monitoring for the Lake Decatur watershed, 1998-1999

 
 Volume/Number:  2000  
 Issuing Agency:   
 Description:  Lake Decatur is the water supply reservoir for the City of Decatur. The reservoir was created in 1922 by constructing a dam to impound the flow of the Sangamon River with an original water volume of 20,000 acre-feet and an area of 4.4 square miles. The dam was later modified in 1956 to increase the maximum capacity of the lake to 28,000 acre-feet. Water withdrawal from the lake has been increasing over the years, averaging 37 million gallons per day (mgd) in 1994. The drainage area of the Sangamon River upstream of Decatur is 925 square miles. The watershed includes portions of seven counties in east-central Illinois. The predominant land use in the watershed is row crop agriculture comprising nearly 90 percent of the land area. The major urban areas within the watershed are Decatur, Monticello, and Gibson City. Lake Decatur has high concentrations of total dissolved solids and nitrates, and nitrate concentrations have been exceeding drinking water standards in recent years. This has created a serious situation for the drinking water supply of the City of Decatur. The Illinois Environmental Protection Agency (IEPA) has issued nine nitrate warnings to the city from 1979 to 1996 for noncompliance with Nitrate-N concentrations in Lake Decatur have exceeded the Illinois Environmental Protection Agency (IEPA) drinking water standards for nitrate when concentrations exceeded of 10 milligrams per liter (mg/l) for the period between 1979 and 1998, except from 1993 to 1995. On June 10, 1992, a Letter of Commitment (LOC) was signed between the IEPA and the City of Decatur. The LOC requires the city to take several steps to reduce nitrate levels in Lake Decatur to acceptable concentrations within nine years of signing the LOC. Nitrate-N cannot be removed from finished drinking water through regular water purification processes. One of the steps required the city to conduct an initial two-year monitoring study of the Lake Decatur watershed to better understand nitrate yields in the watershed. In 1993, the Illinois State Water Survey received a grant from the City of Decatur, conducted a two-year monitoring study, and developed land use management strategies that could assist the city comply with the IEPA drinking water standards (Demissie et al., 1996). This technical report presents the annual data for all six years of monitoring (May 1993-April 1999) and monthly data for the sixth year of monitoring (May 1998-April 1999). 
 Date Created:  9 24 2004 
 Agency ID:  CR-2000-06 
 ISL ID:  000000000831   Original UID: 999999994310 FIRST WORD: Watershed 
 

Title:  

Watershed monitoring for the Lake Decatur Watershed, 1999-2000.

 
 Volume/Number:  2002  
 Issuing Agency:   
 Description:  Lake Decatur is the water supply reservoir for the City of Decatur. The reservoir was created in 1922 by constructing a dam to impound the flow of the Sangamon River. The dam was modified in 1956 to increase the maximum capacity of the lake to 28,000 acre-feet. The drainage area of the Sangamon River upstream of Decatur is 925 square miles and includes portions of seven counties in east-central Illinois. Lake Decatur has high concentrations of total dissolved solids and nitrates, and nitrate-N concentrations have been exceeding drinking water standards in recent years. This has created a serious situation for the drinking water supply of the City of Decatur, since nitrate-nitrogen (N) cannot be removed from finished drinking water through regular water purification processes. Nitrate-N concentrations in Lake Decatur have exceeded the Illinois Environmental Protection Agency (IEPA) drinking water standard of 10 milligrams per liter (mg/l) on occasions each year for the period between 1970 and 2000, except from 1993 to 1995. Since 1993, the Illinois State Water Survey has been monitoring the Lake Decatur watershed for trends in nitrate-N concentrations and loads and to identify any significant changes in the watershed. The purpose of the monitoring is to collect reliable hydrologic and water quality data throughout the watershed for use by city planners and resource managers to develop watershed management alternatives based on scientific data. This report presents the annual data for all seven years of monitoring (May 1993-April 2000) and monthly data for Year 7 of monitoring (May 1999-April 2000). Based on the seven years of data, it can be concluded that the unit of nitrate-N loads are relatively uniform over the entire watershed but tend to be slightly higher at the tributary streams in the upper Sangamon River watershed than at the Sangamon River stations closer to the lake. Nitrate-N loads vary with concentrations and streamflow and were the lowest in Year 7 because of the low streamflows during that year. Flow-weighted nitrate-N concentrations have been increasing during the study period at the Monticello station. The highest nitrate-N concentrations during the monitoring period were observed in years 6 and 7. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2002-01 
 ISL ID:  000000000859   Original UID: 999999994336 FIRST WORD: Watershed 
 

Title:  

Watershed monitoring for the Lake Decatur watershed, 2000-2003.

 
 Volume/Number:  2005  
 Issuing Agency:   
 Description:  Lake Decatur is the water supply reservoir for the City of Decatur. The reservoir was created in 1922 by constructing a dam to impound the flow of the Sangamon River. The dam was modified in 1956 to increase the maximum capacity of the lake to 28,000 acre-feet. The drainage area of the Sangamon River upstream of Decatur is 925 square miles and includes portions of seven counties in east-central Illinois, which are primarily in agricultural production. Lake Decatur has high concentrations of total dissolved solids and nitrates, and nitrate-nitrogen (nitrate-N) concentrations have been exceeding drinking water standards in recent years. This created a serious situation for the drinking water supply of the City of Decatur because nitrate-N cannot be removed from finished drinking water through regular water purification processes. Nitrate-N concentrations in Lake Decatur have exceeded the Illinois Environmental Protection Agency (IEPA) drinking water standard of 10 milligrams per liter (mg/L) on occasions each year between 1979 and 2002, except in 1993, 1994, 1995, and 2000. In June 2002, the City of Decatur activated a newly constructed nitrate-removal facility. Since 1993, the Illinois State Water Survey has been monitoring the Lake Decatur watershed for trends in nitrate-N concentrations and loads and to identify any significant changes in the watershed. The continued purpose of the monitoring is to collect reliable hydrologic and water quality data throughout the watershed for use by city planners to efficiently operate the nitrate removal facility and by resource managers to develop watershed management alternatives based on scientific data. This report presents annual data for 10 years of monitoring (May 1993-April 2003) and monthly data for Project Years (PYs) 8-10 of monitoring (May 2000-April 2003). Based on these data, it can be concluded that the average unit nitrate-N loads are relatively uniform over the entire watershed, but tend to be slightly higher at the tributary stations than at the Sangamon River stations. There also can be considerable differences in loads at tributary stations from year to year. Nitrate-N loads vary with concentration and streamflow. Average annual runoff has varied from 4 to 14 inches over the monitoring period. Concentrations were lowest in PY 7 and highest in PY 1 due to extremely low and high streamflows, respectively. Flow-weighted nitrate-N concentrations have been increasing at the Monticello and Big Ditch stations during the study period. The highest nitrate-N concentrations during the monitoring period were observed in PY 6 and PY 7. Area-weighted annual nitrate-N yield into Lake Decatur has varied between 10 (1999) and 38 (1998) lb/acre during the 10-year monitoring period (1993-2003). 
 Date Created:  4 19 2006 
 Agency ID:  CR-2005-09 
 ISL ID:  000000000942   Original UID: 999999994472 FIRST WORD: Watershed 
 

Title:  

Wells and pumping systems for domestic water supplies

 
 Volume/Number:  1973  
 Issuing Agency:   
 Description:  This circular presents basic information on wells and pumping systems used for farm and domestic groundwater supplies. It describes types of wells and their construction, development, and costs. It discusses the various types of pumps and pressure tanks, how to select them, and their costs. Suggestions on locating wells to prevent pollution and procedures for disinfecting a homewater supply system are included. 
 Date Created:  9 24 2004 
 Agency ID:  C-117 
 ISL ID:  000000000740   Original UID: 999999993774 FIRST WORD: Wells